Compendio final certificacion
Python

Exam block #1: Computer Programming
and Python Fundamentals

Study Pages
Obijectives covered by the block:
PCEP 1.1 Understand fundamental terms and definitions

« interpreting and the interpreter, compilation and the compiler, lexis, syntax and
semantics

PCEP 1.2 Understand Python's logic and structure
« keywords, instructions, indenting, comments
PCEP 1.3 Introduce literals and variables into code and use different numeral systems
« Boolean, integers, floating-point numbers, scientific notation, strings, binary, octal,
decimal, and hexadecimal numeral system, variables, naming conventions,
implementing PEP-8 recommendations
PCEP 1.4 Choose operators and data types adequate to the problem
e numeric operators: **, *, /, %, //, +, -, string operators: *, +, assignments and
shortcut operators, unary and binary operators, priorities and binding, bitwise
operators: ~, s, *, |, <<, >>, Boolean operators: not, and, or, Boolean expressions,
relational operators (==, !=, >, >=, <, <=), the accuracy of floating-point numbers,
type casting
PCEP 1.5 Perform Input/Output console operations

e functions: print (), input (), sep= and end= keyword parameters, functions:
int () and float ()

Understanding fundamental concepts

1. A language is a means (and a tool) for expressing and recording thoughts.

2. A natural language is a language people use to communicate with each other in
everyday life. English, Russian, German, Swabhili, and Hindi are examples of natural
languages.

3. A programming language is a language developed by humans and used to
communicate with computers. A programming language has a set of means to
instruct a computer what to do and how.

4. A high-level programming language is a programming language which operates
on a high level of abstraction thereby allowing the developer to ignore the physical
details of the computer's hardware, for example the CPU type, memory size and
organization, etc. Python, JavaScript, and C/C++ are all examples of high-level
programming languages.

5. A machine language is a language placed at the lowest level of computer
programming. It's a sequence of bits (binary digits usually recognized as 0 and 1)
which directly forces the CPU to execute the desired elementary operations.

6. Aninstruction list (abbreviated to IL) is a list of all elementary (atomic) operations
which can be executed by a certain CPU. For example, x86 (used in personal
computers) and arm (used in mobile devices) processors have different and
incompatible instruction lists).

7. Asource code is a text encoded in any of the programming languages (regardless of
the language's level). Usually, the source code is put inside a text file which resides
inside the developer's computer filesystem, while the file name's extension reveals
the programming language used to write the code (for example, files with names
which ends with .py contain Python source code, while the . cpp extension marks
files which hold C++ (usually pronounced as see-plus-plus) source code.

8. Any language (no matter if it's natural or artificial) is constituted by:

(¢]

an alphabet understood as a set of symbols used to build words of a certain
language (e.g. the Latin alphabet for English, the Cyrillic alphabet for
Russian, Kanji for Japanese, and so on).

a lexis, also known as a dictionary, is a set of words the language offers its
users (for example, the word "chat™ is present both in English and French
dictionaries, but its meaning is obviously different).

syntax is a set of rules used to determine if a certain sequence of words
forms a valid sentence.

semantics is defined as a set of rules which settle whether or not a certain
phrase or sentence makes sense in a given language.

9. A source code cannot be directly executed by a computer. To make it possible
the source code has to be translated into a machine code accepted by a target
computer and its CPU. This task can be done using two different techniques:

(o]

compilation performed by a one-time translation of the source program; an
executable binary file is created in effect — the file can be run at any time
without the need to have the source code; the program that performs the
above translation is called a compiler or translator.

interpretation which involves a dedicated program designed to translate the
source program on-the-fly each time it has to be run; the program
performing this task is called an interpreter; this means that the interpreter
is needed whenever the source code has to be executed.

10. A specific programming language is designed to be the object of either compilation
or interpretation (this choice imposes certain distinctive features onto the language).
For example, Python is an interpreted programming language, while C++ is a
compiled one.

11. The interpreter and its environment, created and distributed by the Python
Software Foundation (PSF) is written mostly in the C programming language. It

allows Python to be easily ported and migrated to all platforms providing the ability
to compile and run C language programs. This is also why the PSF implementation
is often referred to as CPython. CPython is the most widely used implementation of

Python.

https://www.python.org/psf-landing/
https://www.python.org/psf-landing/

Python basic types and literals

1.

A literal is data whose value is determined by the literal itself. Different kinds of
data are coded in different ways, enabling Python (and the human reader of the
source code) to determine each literal's type. Knowing each argument's type is
crucial to understand what operations are legal, and what results can be returned.

Integer (int for short) is a type dedicated to storing integral numbers, that is,
numbers that lack fractional parts. For example, 1 is an integral number and 1.5 is
not.

Most used integer literals in Python consist of a sequence of decimal digits. Such a
sequence cannot include white spaces, but can contain any number of
(underscore) characters. Note: there must not be more than one underscore between
two digits, and the underscore must be neither the last nor the first character of the
literal. Underscores don't change a literal's value, and their only role is to improve
literal readability. Integer literals can be preceded by any number of - (minus) or +
(plus) characters, which are applied to set the literal's sign.

Here are some examples of correct integer literals:
o 1 111 and 1111 encode the same integer value (one thousand one hundred
and eleven)
-+-3 and -3 denote the same integer value (minus three)
+1 and 1 encode the same integer value (one)

Integer literals may be written using radices other than 10:

o if a literal starts with either a 0o or oo digraph, it's an octal value (note: it
must contain octal digits only!)
0010 encodes an integer value equal to eight.
if a literal starts with either a ox or ox digraph, it's a hexadecimal value
(note: letters from a to f used as hexadecimal digits may be upper- or lower-
case)
0x11 encodes an integer value equal to seventeen.
if a literal starts with either a oo or oz digraph, it's a binary value (note: it
must contain 0s and 1s only!)

o 0bl1l encodes an integer value equal to seven.

6. Floating point (f10at for short) is a type designed to store real numbers (in the
mathematical sense), that is, numbers whose decimal expansion is or can be non-
zero. Such a class of numbers includes fractions (integers don't).

7. Float literals are distinguished from integers by the fact that they contain a dot (.)
or the letter e (lower- or upper-case) or both. If the only digits which exist before or
after the dot are zeros, they can be omitted. Like integers, floats can be preceded by
any number of - and + characters, which determine the number's sign. White spaces
are not allowed, while underscores are.

8. If the float literal contains the letter e, it means that its value is scaled, that is, it's
multiplied by a power of 10 while the exponent (which must be an integer!) is
placed directly after the letter. A record like this:

mEn
is treated as a value equal to:
m x 10n

This syntax is called scientific notation and is used to denote a number whose
absolute value is extremely large (close to infinity) or extremely small (close to
Zero).

9. Here are some examples of correct float literals:
o 1.1 —one and one-tenth

1.0 (1. for short) — one point zero

0.1 (.1 for short) — one-tenth

1E1 — ten point zero

1e-1 — one-tenth

-1.1E-1 — minus eleven hundredths

o O O O O

Python basic types and literals: continued

10. String literals are sequences (including empty ones) of characters (digits, letters,
punctuation marks, etc.). There are two kinds of string literal:

single-line, when the string itself begins and ends in the same line of code:
these literals are enclosed in a pair of ' (apostrophe) or " (quote) marks.
multi-line, when the string may extend to more than one line of code: these
literals are enclosed in a pair of trigraphs either "~ or r
strings enclosed inside apostrophes can contain quotes, and vice versa.
if you need to put an apostrophe inside an apostrophe-limited string, or a
quote inside a quote-limited string, you must precede them with the \
(backslash) sign, which acts as an escape character (a character which
changes the meaning of the character that follows it); some of the most used
escape sequences are:

= \\ —backslash

= \' —apostrophe

= \"—qQuote

= \n—newline character

= \r —carriage return character

= \t — horizontal tab character

11. Here are some examples of correct string literals:

(o]

O O O O O

"Hello world"
'Goodbye !

' (an empty string)
"Python's den"
'Python\'s den'
"""Two lines"""

12. Boolean literals denote the only two possible values used by the Boolean algebra
— their only acceptable denotations are True and False.

13. The none literal denotes an empty value and can be used to indicate that a certain
item contains no usable value.

Operators

1. An operator is a symbol that determines an operation to perform. The operator along
with its arguments (operands) forms an expression that is subject to evaluation and
provides a result.

2. There are three basic groups of operators in Python:
o arithmetic, whose arguments are numbers;
o string, which operates on strings or strings and numbers;
o Boolean, which expects that their arguments are Boolean values.

3. Aunary operator is an operator with only one operand.

4. Abinary operator is an operator with two operands.

Unary arithmetic operators

Operator Meaning Example
- Change argument's sign - (-2) is equalto 2

+ Preserve argument's sign + (-2) is equal to -2

Binary arithmetic operators (ordered according to descending priority)

Priority Operator Name Example Meaning Result Result Type

e int if both arguments are

Highest ** Exponentiation 2 ** 3 23 8 ints
e float otherwise

e int if both arguments are

¢ Multiplication 2 * 3 2x3 6 ints
e float otherwise

e always float
e raises

* / Division 4/ 2 4+2 2.0 ZeroDivisionError
when divider is zero
e int if both arguments are
ints
e // Integer division 5 // 2 2 ’ fl-oat otherwise
e raises

ZeroDivisionError
when divider is zero

e int if both arguments are

ints
Remainder e float otherwise
° 3 5% 2 5mod2 1 .
(modulo) e raises

ZeroDivisionError
when divider is zero

e int if both arguments are

+ Addition 2+ 1 2+1 3 ints
e float otherwise

Lowest)
e int if both arguments are

Subtraction 2 -1 2-1 1 ints
e float otherwise

e pairs of parentheses can be used to change the order of operations, for example:
o 2 + 3 * 4evaluatesto 14
o (2 + 3) * 4evaluatesto 20

e when operators of the same priority (other than **)are placed side-by-side in the same
expression, they are evaluated from left to right: therefore, the expression:

1/ 2 * 2
evaluatesto 1.0, notto 0.25.

This convention is called left-sided binding.

¢ when more than one ** operator is placed side-by-side in the same expression, they are
evaluated from right to left: therefore, the expression:

2**2**3

evaluates to 256 (28), not to 64 (43) — this is right-sided binding.

String operators (ordered according to
descending priorities)

The rules governing the use of operators and parentheses remain the same, and left-sided
binding is in effect.

Priority Operator Name Example Result Result type
. — 'a' * 3 .
Highest * Replication 3 % g 'aaa' Always a string
]]] z]] az]

Middle + Concatenation Always a string

IZI + lal 'Za'

Boolean operators (ordered according to descending priorities)

Boolean operators demand Boolean arguments, and always result in a Boolean result. The
rules governing the use of operators and parentheses remain the same, including left-sided
binding.

Priority Operator Name Example Result
not false True
Highest not negation
not True False

False and False False

False and True False
Middle and conjunction

True and False False

True and True True

False or False False

False or True True
Lowest or disjunction

True or False True

True or True True

Relational operators

Relational operators compare their arguments to diagnose the relationship between them,
and always return a Boolean value indicating the comparison result.

Operator Name Example Result

- equal to 2 == False

I= not equal to 2 1= 1 True
> greater than 2 > 1 True
N reater or I2 >= 1 True

greaterorequa 1 >>= 1 True
< less than 2 <1 False
<= | r | <= 1 False

€ssorequa 1 <=1 True

Variables

1. Avariable is a named container able to store data.

2. Avariable's name can consist of:
o letters (including non-Latin ones)
o digits
o underscores (_)

and must start with a letter (note: underscores count as letters). Upper- and lower-case
letters are treated as different.

3. Variable names which start with underscores play a specific role in Python — don't use
them unless you know what you're doing.

4. Variable names are not limited in length.

5. The name of the variable must not be any of Python's keywords (also known as reserved
words). The complete list of Python 3.8 keywords looks as follows:

'False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await',
'break', 'class', 'continue', 'def', 'del', 'elif', 'else',
'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in',
'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return',

'try', 'while', 'with', 'yield'
* Note: Python 3.9 introduced a new keyword, peg parser , which is an easter egg

related to the rollout of a new PEG parser for CPython. You can read more about this in
PEP 617. The keyword will most probably be removed in Python 3.10.

6. These are some legal, but not necessarily the best, Python variable names:
o 1
o counter 2
O —
o Tax22

The assignment operator

7. The assighment operator = is designed to assign a value to a variable:

variable = expression
For example:

counter = 0

pi2 = 3.1415 ** 2

or —when more than one variable is assigned with the same value:

variable 1 = variable 2 = ... = expression
For example:
counter = stages = 0

8. Avariable must be assigned (defined) before its first use — using a variable without prior
definition (assighment) raises the NameError exception.

9. Python is a dynamically typed language, which means that a variable can freely change its
type according to the last assignment it took part in.

https://www.python.org/dev/peps/pep-0617/

10. There are some short-cut (compound) operators which simplify certain kinds of

assignments.

Compound operators

Compound Arithmetic Operators

Operator

variable +=
expression

variable -=
expression

variable *=
expression

variable /=
expression

variable //=
expression

Q

variable %=
expression

variable **=
expression

Meaning

variable = variable
(expression)

variable = variable
(expression)

variable = variable
(expression)

variable = variable
(expression)

variable = variable
(expression)

variable = variable
(expression)

variable = variable
(expression)

Compound String Operators

Operator

variable +=
expression

variable *=
expression

Note: Boolean operators have no short-cut variants.

* %

Meaning

variable = variable

(expression)

variable = variable

(expression)

+

*

Example

counter += 1

due -= ret

next power *=
next power

fraction /= fraction

always one //=
always one

always zero %= 1

square me **= 2

Example

header +=
T X% %%

doubled *= 2

Comments

11. A part of the code line which starts with hash (#), which is not a part of a string literal, is

considered a comment (a part of the code which is ignored by the interpreter)

For example, these two lines contain comments:

This is a line which is completely ignored by the Python interpreter.

result

= True # only part of this line is a comment

Basic Input/Output

1.

The input () function is used to interact with the user, allowing them to suspend
program execution and to enter a sequence (including an empty one) of characters,
which is the function's result.

If the user presses <enter> while providing no other input, the input () function
returns an empty string as a result.

For example, the name variable is assigned with a string inputted by the user:

name = input ()

. The input () function accepts an optional argument which is a string; the argument

is printed on the screen before the actual input begins.

For example, the user is prompted to input the name:

name = input ('What is your name?')

To convert the user's input into an integer number, the int () function can be used.

. An operation during which the data changes its type is called type casting.

For example, the user is asked to input a year of birth. The input is converted into an
integer number and assigned to the b _year variable:

b _year = int (input ('What is your year of birth?'))

. To convert the user's input into a float number, the f1oat () function can be used.

For example, the user is asked to input a height measured in meters. The input is
converted into a float number and assigned to the m stature variable:

m_stature = float (input ('What is your height in meters?'))

If the int () Or f1oat () is not able to perform the conversion due to the incorrect
contents of the user's input, the vailueError exception is raised.

. Unless otherwise specified, the printed values are separated by single spaces.

For example, the following snippet sends 1 2 3 to the screen:

print (1, 2, 3)

If the invocation makes use of the sep keyword parameter, the parameter's value
(even when it's empty) is used to separate outputted values instead of spaces.

For example, the following snippet sends 1+2*3 to the screen:

print(l, 2, 3, sep='*")

10.

11.

12.

Unless otherwise specified, each print () function invocation sends the
newline character to the screen before its completion, therefore each print ()
function's output starts on a new line.

For example, the following snippet produces two lines of output on the screen:
print ('Alpha')

print ('Bravo')

If the invocation makes use of the end keyword parameter, the parameter's
value is (even when it's empty) used to complete the output instead of the newline.

For example, the following snippet produces one line of output on the screen:
print ('Alpha', end='")

print ('Bravo')

The end and sep parameters can be used together.
For example, the following snippet produces one line of asterisk-separated letters:
print ('A', 'B', sep='*', end='*")

print('C")

Exam block #2: Control Flow —
Conditional Blocks and Loops

Study Pages
Obijectives covered by the block:
PCEP 2.1 Make decisions and branch the flow with the if instruction

« conditional statements: if, if-else, if-elif, if-elif-else,
o multiple conditional statements,
« nesting conditional statements.

PCEP 2.2 Perform different types of iterations

the pass instruction,

building loops with while, for, range(), and in,

iterating through sequences, expanding loops with while-else and for-else,
nesting loops and conditional statements,

controlling loop execution with break and continue.

Conditional statements

1. The conditional statement (the if statement) is a means allowing the programmer
to branch the execution path and to execute (or not) selected instructions when a
certain condition is met (or not).

2. The basic form of the i statement looks as follows:
if condition:

instructions

3. The condition isan expression — if it evaluates to True, Or to a non-zero numeric
value, or to a non-empty string and is not none, it is fulfilled (met), and the nested
instructions placed after the i £ are executed.

4. When the condition is not met, these instructions are skipped.

5. When there is only one instruction that should be executed conditionally, the
instruction can be written in the following form:

if condition: instruction

6. For example, the following snippet prints TrUE to the screen:
counter =1
if counter > 0:

print ('TRUE")

7. The empty instruction denoted by the pass keyword can be used to indicate that no
action should be performed in the specific context. As the i £ instruction syntax

10.

11.

insists that there should be at least one statement after it, the following snippet does
not affect program execution:

if condition:

pass

It is suggested to use one tabulation character to make one indent level in Python
code, while the recommended tab size (settable in virtually all code editors) is 4.

. The e1se branch can be used to specify a part of the code that should be executed

when the condition is not met:
if condition:
instructions

else:

instructions

For example, the following snippet prints TrRue when the counter variable is
greater than zero, and Farse otherwise:

if counter > 0:
print ('TRUE"')
else:

print ('FALSE')

To check more than one condition within one conditional block, the 11 £ branch or
branches may be employed. In that case, not more than one if/e1if branch can be
executed. The e1se branch is optional, and must be the last branch.

12. For example, the following snippet prints pLus when the counter variable is
greater than zero, m1nus when it's less than zero, and zero when it's equal to zero:

if counter > 0:
print ('PLUS")
elif counter < O:
print ("MINUS')
else:

print ('ZERO")

Loops

1. The while loop statement is a means allowing the programmer to repeat the
execution of the selected part of the code as long the specified condition is true.
The condition is checked before the loop's first turn, and therefore the loop's body
may not even be executed once.

2. The basic form of the while statement looks as follows:
while condition:

instructions

3. The condition is an expression — as long it evaluates to True, Or to @ non-zero
numeric value, or to a non-empty string, it is fulfilled (met) and is not None, the
nested instructions placed after the whi1e are executed.

4. When the condition is not met, these instructions are skipped.

For example, the following snippet prints TruUE twice to the screen:

counter = 2

if counter > O0:
print ('TRUE")

counter -= 1

. The e1se branch can be used to specify a part of the code that should be executed
when the loop’s condition is not met:

while condition:
instructions
else:

instructions

For example, the following snippet prints TrueE FALSE to the screen:
counter = 1

while counter > 0:

print ('TRUE', end="' ")

counter -=1

else:

print ('FALSE')

. If the condition is met at the beginning of the loop and there is no chance that the
condition value has changed inside the body of the loop, the execution enters an
infinite loop which cannot be broken without the user's intervention, for example
by pressing the Ctrl-C (Ctrl-Break) key combination.

For example, the following snippet infinitely prints TruE to the screen:

while True:

10.

11.

print ('TRUE', end="' ")

The for loop statement is a means allowing the programmer to repeat the
execution of the selected part of the code when the number of repetitions can be
determined in advance. The for statement uses a dedicated variable called a
control variable, whose subsequent values reflect the status of the iteration.

. The basic form of the for statement looks as follows:

for control variable in range (from, to, step):

instructions

The range () function is a generator responsible for the creation of a series of
values starting from from and ending before reaching to, incrementing the current
value by step.

The invocation range (i, 3) Is the equivalent of range (i, j, 1)

The invocation range (i) is the equivalent of range (0, 1)

For example, the following snippet prints o, 1, 2, to the screen:
for i in range(3):

print (i, end="',")

For example, the following snippet prints 2 1 0 to the screen:

for i in range(2, -1, -1):

print (i, end=' ")

12. The e1se branch can be used to specify a part of the code that should be
executed when the loop's body is not entered, which may happen when the range
being iterated is empty or when all the range's values have already been consumed.

For example, the following snippet prints 0 1 2 rInIsHED to the screen:
for i in range(3):

print (i, end=' ")

else:

print ('FINISHED'")

For example, the following snippet prints rInIsHED to the screen:
for i in range(l,1):

print (i, end=' ")

else:

print ('FINISHED'")

13. The break statement can be used inside the loop's body only, and causes
immediate termination of the loop’s code. If the loop is equipped with the e1se
branch, it is omitted.

For example, these two snippets print 0 1 to the screen:
break inside for

for i in range(3):

if i ==

break

print (i, end=' ")
else:

print ('FINISHED')

break inside while

while True:

print (i, end=' ")

break
else:

print ('FINISHED')

The continue Statement can be used inside the loop's body only, and
causes an immediate transition to the next iteration of the for loop, or to the while
loop's condition check.

For example, these two snippets print 0 2 rINTISHED to the screen:
continue inside for
for i in range(4):

if 1 % 2

Il
Il
i

continue

print (i, end=' ")

else:

print ('"FINISHED')

continue inside while
i = -1

while i < 3:

if i %2 !'=0:

continue

print (i, end=' ")

else:

print ("FINISHED')

Exam block #3: Data Collections — Tuples,
Dictionaries, Lists, and Strings

Study Pages
Obijectives covered by the block:
PCEP 3.1 Collect and process data using lists
e constructing vectors, indexing and slicing, the len() function, basic list methods
(append(), insert(), index()) and functions (len(), sorted(), etc.), the del instruction;
iterating through lists with the for loop, initializing loops; in and not in operators,
list comprehensions; copying and cloning, lists in lists: matrices and cubes.

PCEP 3.2 Collect and process data using tuples

« tuples: indexing, slicing, building, immutability; tuples vs. lists: similarities and
differences, lists inside tuples and tuples inside lists.

PCEP 3.3 Collect and process data using dictionaries
« dictionaries: building, indexing, adding and removing keys; iterating through
dictionaries and their keys and values, checking the existence of keys; keys(),
items() and values() methods.
PCEP 3.4 Operate with strings
 constructing strings, indexing, slicing, immutability; escaping using the \ character;

quotes and apostrophes inside strings, multi-line strings, basic string functions and
methods.

Lists

1. Alistis a data aggregate that contains a certain number (including zero) of elements
of any type.

2. Lists are sequences — they can be iterated, and the order of the elements is
established.

3. Lists are mutable — their contents may be changed.

4. Lists can be initialized with list literals. For example, these two assignments
instantiate two lists — the former is empty, while the latter contains three elements:

empty list = []

three elements = [1, 'two', False]

5. The number of elements contained in the list can be determined by the 1en ()
function. For example, the following snippet prints 3 to the screen:

print(len(['a', 'b', 'c'])

6. Any of the list's elements can be accessed using indexing. List elements are indexed
by integer numbers starting from zero. Therefore, the first list element's index is 0
while the last element's index is equal to the list length minus 1. Using indices that
are not integers raises the TypeError exception. For example, the following snippet
printsa b ¢ 0 1 2 to the screen:

the list = ['a', 'b', 'c']
counter = 0

for ix in range (len(the list)):
print (the list[ix], end="' ")

the list[ix] = counter

counter += 1
for ix in range(len(the list)):

print (the list[ix], end=' ")

7. The list elements can be indexed with negative numbers, too. In this case, -1
accesses the last element of the list, and -2 accesses the one before the last, and so
on. The alternative first list element's index iS -1en (1ist).

8. An attempt to access a non-existent list element (when the index goes out of the
permissible range) raises the 1ndexError exception.

9. Aslice is a means by which the programmer can create a new list using a part of the
already existing list.

10. The most general slice looks as follows:

the list[from:to:step]

and selects those elements whose indices start at from, don't exceed to, and change
with step. For example, the following snippet prints ['b', 'd'] to the screen:

print((1,2,3)[4:5])

11. The following assumptions are made regarding the slices:
theilist[from:to]iseqmvamntﬂ)theilist[from:tozl]

the list[:to] iSequivalentto the 1ist[0:to]

the list[from:] ISequivalentto the list[from:len (the list)-1]
the list[:] ISequivalentto the 1ist[0:len(the list)-1]

o O O O

12. Slices — like indices — can take negative values. For example, the following
snippet prints [1, 2] to the screen:

the list = [0, 1, 2, 3]

print (the list[-3:-1])

Lists and strings

1. Ifany of the slice's indices exceeds the allowable range, no exception is raised, and
the non-existent elements are not taken into consideration. Therefore, it is possible
that the resulting slice is an empty list.

2. Assigning a list to a list does not copy elements. Such an assignment results in a
situation when more than one name identifies the same data aggregate.

For example, the following snippet prints True to the screen:

list a = [1]

list b = list a

list b[0] =0

print (list a[0] == list b[0])

As the slice is a copy of the source list, the following snippet prints ra1se to the
screen:

list a = [1]
list b = list al[:]
list b[0] = 0

print (list a[0] == list b[0])

3.

The .append (element) method can be used to append an element to the end of an
existing list. For example, the following snippet outputs [1] to the screen:

the list = []
the list.append (1)

print (the list)

. The .insert (at_index, element) method can be used to insert the element at

the at index Of the existing list. For example, the following snippet outputs (2,
1] to the screen:

the list = [1]
the list.insert (0, 2)

print (the list)

. The del the 1list[index] instruction can be used to remove any of the existing

list elements. For example, the following snippet prints [] to the screen:
the list = [1]
del the 1ist[O0]

print (the list)

. The in and not in operators can check whether any value is contained inside the list

or not. For example, the following snippet prints True False to the screen:
the list = [1, 'a']

print('a' in the list, 1 not in the list)

7. Lists can be iterated through (traversed) by the for loop, which allows the
programmer to scan all their elements without the use of explicit indexing. For
example, the following snippet prints 1 2 3 to the screen:

the list = [1,2,3]
for element in the list:

print (element, end=' ")

8. List comprehension allows the programmer to construct lists in a compact way.
For example, the following snippet prints [1, 2, 3] to the screen:

the list = [x for x in range(1l,4)]

print (the list)

9. Strings, like lists, are sequences, and in many contexts they behave like lists,
especially when they are indexed and sliced or are arguments of the 1en () function.

10. The in and not in operators can be applied to strings to check if any string is a part
of another string. An empty string is considered a part of any string, including an
empty one.

11. Strings are immutable and their contents cannot be changed.

Tuples

1. Atuple, like a list, is a data aggregate that contains a certain number (including
zero) of elements of any type. Tuples, like lists, are sequences, but they are
immutable. You're not allowed to change any of the tuple elements, or add a new
element, or remove an existing element. Attempting to break this rule will raise the
TypeError exception.

. Tuples can be initialized with tuple literals. For example, these assignments
instantiate three tuples — one empty, one one-element, and one two-element:

empty tuple = () # tuple() has the same meaning
one element tuple = tuple(l) # must not be replaced with (1)!
one element tuple =1, # the same effect as above

two_element tuple = (1, 2.5)

two element tuple 1, 2.5 # the same effect as above

. The number of elements contained in the tuple can be determined by the 1en ()
function. For example, the following snippet prints 4 to the screen:

print(len((1, 2.2, '3', True))

Note the inner pair of parentheses — they cannot be omitted, as it will cause the
tuple to be replaced with four independent values and will cause an error.

Any of the tuple's elements can be accessed using indexing, which works in the
same manner as in lists, including slicing.

An attempt to access a non-existent tuple element raises the TndexError exception.

If any of the slice's indices exceeds the permissible range, no exception is raised,
and the non-existent elements are not taken into consideration. Therefore, the
resulting slice may be an empty tuple. For example, the following snippet outputs
() to the screen:

print((1,2,3)[4:5])

7. The in and not in operators can check whether or not any value is contained inside
the tuple.

8. Tuples can be iterated through (traversed) by the for loop, like lists.

9. The + operator joins tuples together.

10. The » operator multiplies tuples, just like lists.

Dictionaries

1. Adictionary is a data aggregate that gathers pairs of values. The first element
in each pair is called the key, and the second one is called the va1ue. Both keys and
values can be of any type.

2. Dictionaries are mutable but are not sequences — the order of pairs is imposed by
the order in which the keys are entered into the dictionary.

3. Dictionaries can be initialized with dictionary literals. For example, these
assignments instantiate two dictionaries — one empty and one containing two
key:value pairs:

empty dictionary = {}

phone directory = {'Emergency': 911, 'Speaking Clock': 767}

Dictionaries — continued

4. Accessing a dictionary's value requires the use of its key. For example, the
following line outputs 911 to the screen:

print (phone directory['Emergency'])

An attempt to access an element whose key is absent in the dictionary raises the
KeyError exception.

. The in and not in operators can be used to check whether a certain key exists in the
dictionary. For example, the following line prints True False to the screen:

print ('Emergency' in phone directory, 'White House' in
phone directory)

. The 1en () function returns the number of pairs contained in the directory. For
example, the following line outputs o to the screen:

print (len (empty directory))

Changing a value of the existing key is done by an assignment. For example, the
following snippet outputs False to the screen:

attendance = {'Bob': True}
attendance['Bob'] = False

print (attendance['Bob'])

. Adding a new pair to the dictionary resembles a regular assignment. For example,
the following snippet outputs 2 to the screen:

domains = {'au': 'Australia'}
domains(['at'] = 'Austria'

print (len (domains))

10.

11.

12.

13.

14.

Removing a pair from a dictionary is done with the de1 instruction. For
example, the following snippet outputs o to the screen:

currencies = {'USD': 'United States dollar'}
del currencies['USD']

print (len (currencies))

When iterated through by the for loop, the dictionary displays only its keys.
For example, the following snippet outputs 2 » to the screen:

phonetic = {'A': 'Alpha', 'B': 'Bravo'}
for key in phonetic:

print (key, end=' ")

The .xeys () method returns a list of keys contained in the dictionary. For
example, the following snippet outputs o B to the screen:

phonetic = {'A': 'Alpha', 'B': 'Bravo'}
for key in phonetic.keys():

print (key, end=' ")

The .values () method returns a list of values contained in the dictionary.
For example, the following snippet outputs a1pha Bravo to the screen:

phonetic = {'A': 'Alpha', 'B': 'Bravo'}
for value in phonetic.values():

print (value, end="' ")

The . items () method returns a list of two-element tuples, each filled with
key:value pairs. For example, the following snippet outputs ('a', 'Alpha')
('B', 'Bravo') to the screen:

phonetic = {'A': 'Alpha', 'B': 'Bravo'}

for item in phonetic.items() :

print (item, end=' ")

Exam block #4: Functions and Exceptions

Study Pages
Obijectives covered by the block:
PCEP 4.1 Decompose the code using functions

« defining and invoking user-defined functions and generators; the return keyword,
returning results, the None keyword, recursion.

PCEP 4.2 Organize interaction between the function and its environment

e parameters vs. arguments; positional, keyword and mixed argument passing; default
parameter values, name scopes, name hiding (shadowing), the global keyword.

PCEP 4.3 Python Built-In Exceptions Hierarchy
« BaseException, Exception, SystemExit, KeyboardInterrupt, abstract exceptions,
ArithmeticError, LookupError along with IndexError and KeyError; TypeError and
ValueError exceptions, the AssertError exception along with the assert keyword.
PCEP 4.4 Basics of Python Exception Handling
o try-except, try-except Exception, ordering the except branches, propagating

exceptions through function boundaries; delegating responsibility for handling
exceptions.

Functions

1. A function is a named, separate part of the code that can be activated on demand.
A function can perform an action, or return a result, or both.

2. The simplest function, which does nothing and returns no result, can be defined in
the following way:

def lazy():

pass

3. Activating a function is done by the function invocation (function call). The
1azy () function defined above can be invoked by the following clause:

lazy ()

4. Function definition must precede its invocation. Breaking this rule raises the
NameError exception.

5. A function can be equipped with an arbitrary number of parameters. The
parameters behave like variables known inside the function only, and their values
are set during the invocation. The invocation must provide as many arguments as
needed to initialize all parameters. Breaking this rule results in raising the
TypeError exception.

6. If afunction is supposed to evaluate a result, it must perform the return expression
instruction, which immediately terminates function execution and causes the
function to return the expression value to the invoker. If the function does not
execute the instruction, or utilizes return without an expression, the None value is
returned implicitly. For example, the following snippet prints True None to the
screen:

def function (parameter) :

if parameter == False:

return True

print (function (False), function(True))

. A function definition can declare default values for some or all of its parameters.
When the invocation does not provide arguments for these parameters, the default
values are taken into consideration. Note: parameters with default values must not
precede the ones without them. For example, the following snippet prints True
False to the screen:

def function (parameter = False):
return parameter

print (function (True), function())

. The positional parameter passing technique is a technique based on the assumption
that the arguments are associated with the parameters based upon their position
(i.e. the first argument value goes to the first parameter, and so on) For example, the
following snippet outputs 1 2 3 to the screen:

def function(a, b, c):
print(a, b, c)

function(l, 2, 3)

. The keyword parameter passing technique is a technique based on the assumption
that the arguments are associated with the parameters based upon the parameter's
names, which must be explicitly specified during the invocation. For example, the
following snippet outputs 1 2 3 to the screen:

def function(a, b, c):
print(a, b, <)

function (c=3, a=1l, b=2)

Functions — continued

10.

11.

12.

13.

14.

15.

A function definition can declare default values for some or all of its
parameters. When the invocation does not provide arguments for these parameters,
the default values are taken into consideration. Note: parameters with default values
must not precede the ones without them. For example, the following snippet prints 1
2 3 to the screen:

def function(a, b, c):
print(a, b, c)

function (1, c¢=3, b=2)

Note that the following invocation is incorrect and will raise the TypeError
exception, because the a parameter is set twice (once with the positional passing and
once with the keyword passing) while the ¢ parameter is not set at all.

function(l, a=1, b=2)

A scope is the part of the code where a certain name is properly recognizable.

A variable existing outside a function has a scope which includes the function's
bodies.

A variable defined inside the function has a scope inside the function's body only.

If a certain variable is used inside a function and the variable’s name is listed
as an argument of the g1oba1 keyword, it has global scope, and it is also
recognizable outside the function. For example, the following snippet outputs 2 to
the screen:

def function() :

16.

17.

global variable
variable +=1
variable =1
function ()

print (variable)

Note: removing the line containing the g1oba1 keyword will spoil the code and the
UnboundLocalError exception will be raised.

Changing the parameter's value doesn’t propagate it outside the function.
For example, the following snippet outputs (1] to the screen:

def function (parameter) :
parameter = [2]

the list = [1]
function (the list)

print (the list)

If the parameter is a list or a dictionary, changing its contents propagates
them outside the function. For example, the following snippet outputs (2] to the
screen:

def function (parameter) :
parameter[0] = 2

the list = [1]
function (the list)

print (the list)

18. Recursion is a programming technique in which the function invokes itself
to perform a complex task. For example, the following snippet contains a function
that evaluates the factorial of its argument and prints 120 to the screen:

def factorial(n):

if n < 2:

return n

else:

return n * factorial(n - 1)

print (factorial (5))

Exceptions and debugging

1. Anexception is an event caused by an execution error which can induce program
termination if not properly handled by the programmer. The situation in which the
exception is created and propagated is called raising the exception.

2. Python professes its philosophy expressed with the sentence: It's better to beg for
forgiveness than ask for permission. The recommendation hidden behind these
words says that the programmer should allow the exceptions to occur and handle
them properly instead of persistently avoiding problems and protecting the code
from all possible errors with all their might.

3. To control exceptions and to handle them, Python provides a dedicated construction
consisting of the try and except branches.

4. The try block encloses a part of the code that may cause an exception and when it
happens, the execution of the block is terminated and the control jumps into the
except block, which is dedicated to recognizing the problem and handling it. For
example, the following snippet prints proceEDING even though the code provokes
division by zero:

try:

x=1/0
except:
X = None

print ('PROCEEDING')

5. Here is a list of the most common Python exceptions:

o ZeroDivisionError: raised by a division in which the divider is zero or is
indistinguishable from zero (/, //, and %)

o ValueError: raised by the use of values that are inappropriate in the
current context, for example, when a function receives an argument of a
proper type, but its value is unacceptable, for example, int(")

o TypeError: raised by attempts to apply data of a type which cannot be
accepted in the current context, for example, int (None)

o AttributeError: raised —among other occasions — when the code tries to
activate a method that doesn't exist in a certain item, for example,
the list.apend() (note the typo!)

o SyntaxError: raised when the control reaches a line of code that violates
Python's grammar, and which has remained undetected until now;

o NameError: raised when the code attempts to make use of a non-existent
(not previously defined) item, for example, a variable or a function.

6. When more than one exception is expected inside the try block and these different
exceptions require different handling, another syntax is used where there is more
than one named except branch. The unnamed (anonymous) except branch is the
default one, and is responsible for servicing these exceptions which still need to be
handled.

7. Not more than one except branch can be executed.

8. The default except branch — if it exists — must be the last branch.

9.

10.

11.

12.

13.

14.

For example, the following snippet outputs nan when the user enters a string that is
not an integer number, zero when the user enters o, and err in the case of another
error:

try:

print (1 / int (input ("Enter a number: ")))
except ValueError:

print ('NAN')

except ZeroDivisionError:

print ('ZERO"')

except:

print ('ERR')

An error existing in the code is commonly called a bug.

The process by which bugs are detected and removed from the code is called
debugging.

The tool which allows the programmer to run the code in a fully controllable
environment is called a debugger.

The 'print debugging' technique is a trivial debugging technique in which the
programmer adds some print () function invocations which help to trace execution
paths and output the values of selected critical variables.

The process in which the code is probed to ensure that it will behave correctly in a
production environment is called testing. The testing should prove that all
execution paths have been executed and caused no errors.

15. The programming technique in which the tests and test data are created before the
code is written or created in parallel with the code is called unit testing. It is
assumed that every code amendment (even the most trivial) is followed by the
execution of all previously defined tests.

	Portada
	Exam block 1 test
	Exam block 2 test
	Exam block 3 test
	Exam block 4 test

