

Compendio final certificación
Python

Exam block #1: Computer Programming

and Python Fundamentals

Study Pages

Objectives covered by the block:

PCEP 1.1 Understand fundamental terms and definitions

 interpreting and the interpreter, compilation and the compiler, lexis, syntax and

semantics

PCEP 1.2 Understand Python's logic and structure

 keywords, instructions, indenting, comments

PCEP 1.3 Introduce literals and variables into code and use different numeral systems

 Boolean, integers, floating-point numbers, scientific notation, strings, binary, octal,

decimal, and hexadecimal numeral system, variables, naming conventions,

implementing PEP-8 recommendations

PCEP 1.4 Choose operators and data types adequate to the problem

 numeric operators: **, *, /, %, //, +, –, string operators: *, +, assignments and

shortcut operators, unary and binary operators, priorities and binding, bitwise

operators: ~, &, ^, |, <<, >>, Boolean operators: not, and, or, Boolean expressions,

relational operators (==, !=, >, >=, <, <=), the accuracy of floating-point numbers,

type casting

PCEP 1.5 Perform Input/Output console operations

 functions: print(), input(), sep= and end= keyword parameters, functions:

int() and float()

Understanding fundamental concepts

1. A language is a means (and a tool) for expressing and recording thoughts.

2. A natural language is a language people use to communicate with each other in

everyday life. English, Russian, German, Swahili, and Hindi are examples of natural

languages.

3. A programming language is a language developed by humans and used to

communicate with computers. A programming language has a set of means to

instruct a computer what to do and how.

4. A high-level programming language is a programming language which operates

on a high level of abstraction thereby allowing the developer to ignore the physical

details of the computer's hardware, for example the CPU type, memory size and

organization, etc. Python, JavaScript, and C/C++ are all examples of high-level

programming languages.

5. A machine language is a language placed at the lowest level of computer

programming. It's a sequence of bits (binary digits usually recognized as 0 and 1)

which directly forces the CPU to execute the desired elementary operations.

6. An instruction list (abbreviated to IL) is a list of all elementary (atomic) operations

which can be executed by a certain CPU. For example, x86 (used in personal

computers) and arm (used in mobile devices) processors have different and

incompatible instruction lists).

7. A source code is a text encoded in any of the programming languages (regardless of

the language's level). Usually, the source code is put inside a text file which resides

inside the developer's computer filesystem, while the file name's extension reveals

the programming language used to write the code (for example, files with names

which ends with .py contain Python source code, while the .cpp extension marks

files which hold C++ (usually pronounced as see-plus-plus) source code.

8. Any language (no matter if it's natural or artificial) is constituted by:

o an alphabet understood as a set of symbols used to build words of a certain

language (e.g. the Latin alphabet for English, the Cyrillic alphabet for

Russian, Kanji for Japanese, and so on).

o a lexis, also known as a dictionary, is a set of words the language offers its

users (for example, the word "chat" is present both in English and French

dictionaries, but its meaning is obviously different).

o syntax is a set of rules used to determine if a certain sequence of words

forms a valid sentence.

o semantics is defined as a set of rules which settle whether or not a certain

phrase or sentence makes sense in a given language.

9. A source code cannot be directly executed by a computer. To make it possible

the source code has to be translated into a machine code accepted by a target

computer and its CPU. This task can be done using two different techniques:

o compilation performed by a one-time translation of the source program; an

executable binary file is created in effect – the file can be run at any time

without the need to have the source code; the program that performs the

above translation is called a compiler or translator.

o interpretation which involves a dedicated program designed to translate the

source program on-the-fly each time it has to be run; the program

performing this task is called an interpreter; this means that the interpreter

is needed whenever the source code has to be executed.

10. A specific programming language is designed to be the object of either compilation

or interpretation (this choice imposes certain distinctive features onto the language).

For example, Python is an interpreted programming language, while C++ is a

compiled one.

11. The interpreter and its environment, created and distributed by the Python

Software Foundation (PSF) is written mostly in the C programming language. It

allows Python to be easily ported and migrated to all platforms providing the ability

to compile and run C language programs. This is also why the PSF implementation

is often referred to as CPython. CPython is the most widely used implementation of

Python.

https://www.python.org/psf-landing/
https://www.python.org/psf-landing/

Python basic types and literals

1. A literal is data whose value is determined by the literal itself. Different kinds of

data are coded in different ways, enabling Python (and the human reader of the

source code) to determine each literal's type. Knowing each argument's type is

crucial to understand what operations are legal, and what results can be returned.

2. Integer (int for short) is a type dedicated to storing integral numbers, that is,

numbers that lack fractional parts. For example, 1 is an integral number and 1.5 is

not.

3. Most used integer literals in Python consist of a sequence of decimal digits. Such a

sequence cannot include white spaces, but can contain any number of _

(underscore) characters. Note: there must not be more than one underscore between

two digits, and the underscore must be neither the last nor the first character of the

literal. Underscores don't change a literal's value, and their only role is to improve

literal readability. Integer literals can be preceded by any number of - (minus) or +

(plus) characters, which are applied to set the literal's sign.

4. Here are some examples of correct integer literals:

o 1_111 and 1111 encode the same integer value (one thousand one hundred

and eleven)

o -+-3 and -3 denote the same integer value (minus three)

o +1 and 1 encode the same integer value (one)

5. Integer literals may be written using radices other than 10:

o if a literal starts with either a 0o or 0O digraph, it's an octal value (note: it

must contain octal digits only!)

o 0o10 encodes an integer value equal to eight.

o if a literal starts with either a 0x or 0X digraph, it's a hexadecimal value

(note: letters from a to f used as hexadecimal digits may be upper- or lower-

case)

o 0X11 encodes an integer value equal to seventeen.

o if a literal starts with either a 0b or 0B digraph, it's a binary value (note: it

must contain 0s and 1s only!)

o 0b111 encodes an integer value equal to seven.

6. Floating point (float for short) is a type designed to store real numbers (in the

mathematical sense), that is, numbers whose decimal expansion is or can be non-

zero. Such a class of numbers includes fractions (integers don't).

7. Float literals are distinguished from integers by the fact that they contain a dot (.)

or the letter e (lower- or upper-case) or both. If the only digits which exist before or

after the dot are zeros, they can be omitted. Like integers, floats can be preceded by

any number of - and + characters, which determine the number's sign. White spaces

are not allowed, while underscores are.

8. If the float literal contains the letter e, it means that its value is scaled, that is, it's

multiplied by a power of 10 while the exponent (which must be an integer!) is

placed directly after the letter. A record like this:

mEn

is treated as a value equal to:

m × 10n

This syntax is called scientific notation and is used to denote a number whose

absolute value is extremely large (close to infinity) or extremely small (close to

zero).

9. Here are some examples of correct float literals:

o 1.1 – one and one-tenth

o 1.0 (1. for short) – one point zero

o 0.1 (.1 for short) – one-tenth

o 1E1 – ten point zero

o 1e-1 – one-tenth

o -1.1E-1 – minus eleven hundredths

Python basic types and literals: continued

10. String literals are sequences (including empty ones) of characters (digits, letters,

punctuation marks, etc.). There are two kinds of string literal:

o single-line, when the string itself begins and ends in the same line of code:

these literals are enclosed in a pair of ' (apostrophe) or " (quote) marks.

o multi-line, when the string may extend to more than one line of code: these

literals are enclosed in a pair of trigraphs either """ or '''

o strings enclosed inside apostrophes can contain quotes, and vice versa.

o if you need to put an apostrophe inside an apostrophe-limited string, or a

quote inside a quote-limited string, you must precede them with the \

(backslash) sign, which acts as an escape character (a character which

changes the meaning of the character that follows it); some of the most used

escape sequences are:

 \\ – backslash

 \' – apostrophe

 \" – quote

 \n – newline character

 \r – carriage return character

 \t – horizontal tab character

11. Here are some examples of correct string literals:
o "Hello world"
o 'Goodbye!'

o '' (an empty string)
o "Python's den"
o 'Python\'s den'
o """Two lines"""

12. Boolean literals denote the only two possible values used by the Boolean algebra

– their only acceptable denotations are True and False.

13. The None literal denotes an empty value and can be used to indicate that a certain

item contains no usable value.

Operators

1. An operator is a symbol that determines an operation to perform. The operator along
with its arguments (operands) forms an expression that is subject to evaluation and
provides a result.

2. There are three basic groups of operators in Python:
o arithmetic, whose arguments are numbers;
o string, which operates on strings or strings and numbers;
o Boolean, which expects that their arguments are Boolean values.

3. A unary operator is an operator with only one operand.

4. A binary operator is an operator with two operands.

Unary arithmetic operators

Operator Meaning Example

- Change argument's sign -(-2) is equal to 2

+ Preserve argument's sign +(-2) is equal to -2

Binary arithmetic operators (ordered according to descending priority)

Priority Operator Name Example Meaning Result Result Type

Highest ** Exponentiation 2 ** 3 23 8

 int if both arguments are
ints

 float otherwise

 * Multiplication 2 * 3 2 × 3 6

 int if both arguments are
ints

 float otherwise

 / Division 4 / 2 4 ÷ 2 2.0

 always float
 raises

ZeroDivisionError
when divider is zero

 // Integer division 5 // 2 2

 int if both arguments are
ints

 float otherwise
 raises

ZeroDivisionError
when divider is zero

 %
Remainder

(modulo)
5 % 2 5 mod 2 1

 int if both arguments are
ints

 float otherwise
 raises

ZeroDivisionError
when divider is zero

Lowest

+ Addition 2 + 1 2 + 1 3

 int if both arguments are
ints

 float otherwise

- Subtraction 2 - 1 2 − 1 1

 int if both arguments are
ints

 float otherwise

 pairs of parentheses can be used to change the order of operations, for example:
o 2 + 3 * 4 evaluates to 14
o (2 + 3) * 4 evaluates to 20

 when operators of the same priority (other than **)are placed side-by-side in the same
expression, they are evaluated from left to right: therefore, the expression:

1 / 2 * 2

evaluates to 1.0, not to 0.25.

This convention is called left-sided binding.

 when more than one ** operator is placed side-by-side in the same expression, they are
evaluated from right to left: therefore, the expression:

2 ** 2 ** 3

evaluates to 256 (28), not to 64 (43) – this is right-sided binding.

String operators (ordered according to

descending priorities)

The rules governing the use of operators and parentheses remain the same, and left-sided

binding is in effect.

Priority Operator Name Example Result Result type

Highest * Replication
'a' * 3
3 * 'a'

'aaa' Always a string

Middle + Concatenation
'a' + 'z'
'z' + 'a'

'az'
'za'

Always a string

Boolean operators (ordered according to descending priorities)

Boolean operators demand Boolean arguments, and always result in a Boolean result. The

rules governing the use of operators and parentheses remain the same, including left-sided

binding.

Priority Operator Name Example Result

Highest not negation
not false True

not True False

Middle and conjunction

False and False False

False and True False

True and False False

True and True True

Lowest or disjunction

False or False False

False or True True

True or False True

True or True True

Relational operators

Relational operators compare their arguments to diagnose the relationship between them,

and always return a Boolean value indicating the comparison result.

Operator Name Example Result

== equal to 2 == 1 False

!= not equal to 2 != 1 True

> greater than 2 > 1 True

>= greater or equal
2 >= 1
1 >= 1

True
True

< less than 2 < 1 False

<= less or equal
2 <= 1
1 <= 1

False
True

Variables

1. A variable is a named container able to store data.

2. A variable's name can consist of:
o letters (including non-Latin ones)
o digits
o underscores (_)

and must start with a letter (note: underscores count as letters). Upper- and lower-case

letters are treated as different.

3. Variable names which start with underscores play a specific role in Python – don't use
them unless you know what you're doing.

4. Variable names are not limited in length.

5. The name of the variable must not be any of Python's keywords (also known as reserved
words). The complete list of Python 3.8 keywords looks as follows:

'False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await',

'break', 'class', 'continue', 'def', 'del', 'elif', 'else',

'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in',

'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return',

'try', 'while', 'with', 'yield'

* Note: Python 3.9 introduced a new keyword, __peg_parser__, which is an easter egg
related to the rollout of a new PEG parser for CPython. You can read more about this in
PEP 617. The keyword will most probably be removed in Python 3.10.

6. These are some legal, but not necessarily the best, Python variable names:
o i
o counter_2
o _
o Tax22

The assignment operator

7. The assignment operator = is designed to assign a value to a variable:

variable = expression
For example:

counter = 0

pi2 = 3.1415 ** 2

or – when more than one variable is assigned with the same value:

variable_1 = variable_2 = ... = expression

For example:

counter = stages = 0

8. A variable must be assigned (defined) before its first use – using a variable without prior
definition (assignment) raises the NameError exception.

9. Python is a dynamically typed language, which means that a variable can freely change its
type according to the last assignment it took part in.

https://www.python.org/dev/peps/pep-0617/

10. There are some short-cut (compound) operators which simplify certain kinds of
assignments.

Compound operators

Compound Arithmetic Operators

Operator Meaning Example

variable +=

expression
variable = variable +

(expression)
counter += 1

variable -=

expression
variable = variable -

(expression)
due -= ret

variable *=

expression
variable = variable *

(expression)
next_power *=

next_power

variable /=

expression
variable = variable /

(expression)
fraction /= fraction

variable //=

expression
variable = variable //

(expression)
always_one //=

always_one

variable %=

expression
variable = variable %

(expression)
always_zero %= 1

variable **=

expression
variable = variable **

(expression)
square_me **= 2

Compound String Operators

Operator Meaning Example

variable +=

expression
variable = variable +

(expression)
header +=

'****'

variable *=

expression
variable = variable *

(expression)
doubled *= 2

Note: Boolean operators have no short-cut variants.

Comments

11. A part of the code line which starts with hash (#), which is not a part of a string literal, is
considered a comment (a part of the code which is ignored by the interpreter)

For example, these two lines contain comments:

This is a line which is completely ignored by the Python interpreter.

result = True # only part of this line is a comment

Basic Input/Output

1. The input() function is used to interact with the user, allowing them to suspend

program execution and to enter a sequence (including an empty one) of characters,

which is the function's result.

2. If the user presses <Enter> while providing no other input, the input() function

returns an empty string as a result.

For example, the name variable is assigned with a string inputted by the user:

name = input()

3. The input() function accepts an optional argument which is a string; the argument

is printed on the screen before the actual input begins.

For example, the user is prompted to input the name:

name = input('What is your name?')

4. To convert the user's input into an integer number, the int() function can be used.

5. An operation during which the data changes its type is called type casting.

For example, the user is asked to input a year of birth. The input is converted into an

integer number and assigned to the b_year variable:

b_year = int(input('What is your year of birth?'))

6. To convert the user's input into a float number, the float() function can be used.

For example, the user is asked to input a height measured in meters. The input is

converted into a float number and assigned to the m_stature variable:

m_stature = float(input('What is your height in meters?'))

7. If the int() or float() is not able to perform the conversion due to the incorrect

contents of the user's input, the ValueError exception is raised.

8. Unless otherwise specified, the printed values are separated by single spaces.

For example, the following snippet sends 1 2 3 to the screen:

print(1, 2, 3)

9. If the invocation makes use of the sep keyword parameter, the parameter's value

(even when it's empty) is used to separate outputted values instead of spaces.

For example, the following snippet sends 1*2*3 to the screen:

print(1, 2, 3, sep='*')

10. Unless otherwise specified, each print() function invocation sends the

newline character to the screen before its completion, therefore each print()

function's output starts on a new line.

For example, the following snippet produces two lines of output on the screen:

print('Alpha')

print('Bravo')

11. If the invocation makes use of the end keyword parameter, the parameter's

value is (even when it's empty) used to complete the output instead of the newline.

For example, the following snippet produces one line of output on the screen:

print('Alpha', end='')

print('Bravo')

12. The end and sep parameters can be used together.

For example, the following snippet produces one line of asterisk-separated letters:

print('A', 'B', sep='*', end='*')

print('C')

Exam block #2: Control Flow –

Conditional Blocks and Loops

Study Pages

Objectives covered by the block:

PCEP 2.1 Make decisions and branch the flow with the if instruction

 conditional statements: if, if-else, if-elif, if-elif-else,

 multiple conditional statements,

 nesting conditional statements.

PCEP 2.2 Perform different types of iterations

 the pass instruction,

 building loops with while, for, range(), and in,

 iterating through sequences, expanding loops with while-else and for-else,

 nesting loops and conditional statements,

 controlling loop execution with break and continue.

Conditional statements

1. The conditional statement (the if statement) is a means allowing the programmer

to branch the execution path and to execute (or not) selected instructions when a

certain condition is met (or not).

2. The basic form of the if statement looks as follows:

if condition:

instructions

3. The condition is an expression – if it evaluates to True, or to a non-zero numeric

value, or to a non-empty string and is not None, it is fulfilled (met), and the nested

instructions placed after the if are executed.

4. When the condition is not met, these instructions are skipped.

5. When there is only one instruction that should be executed conditionally, the

instruction can be written in the following form:

if condition: instruction

6. For example, the following snippet prints TRUE to the screen:

counter = 1

if counter > 0:

print('TRUE')

7. The empty instruction denoted by the pass keyword can be used to indicate that no

action should be performed in the specific context. As the if instruction syntax

insists that there should be at least one statement after it, the following snippet does

not affect program execution:

if condition:

pass

8. It is suggested to use one tabulation character to make one indent level in Python

code, while the recommended tab size (settable in virtually all code editors) is 4.

9. The else branch can be used to specify a part of the code that should be executed

when the condition is not met:

if condition:

instructions

else:

instructions

10. For example, the following snippet prints TRUE when the counter variable is

greater than zero, and FALSE otherwise:

if counter > 0:

print('TRUE')

else:

print('FALSE')

11. To check more than one condition within one conditional block, the elif branch or

branches may be employed. In that case, not more than one if/elif branch can be

executed. The else branch is optional, and must be the last branch.

12. For example, the following snippet prints PLUS when the counter variable is

greater than zero, MINUS when it's less than zero, and ZERO when it's equal to zero:

if counter > 0:

print('PLUS')

elif counter < 0:

print('MINUS')

else:

print('ZERO')

Loops

1. The while loop statement is a means allowing the programmer to repeat the

execution of the selected part of the code as long the specified condition is true.

The condition is checked before the loop's first turn, and therefore the loop's body

may not even be executed once.

2. The basic form of the while statement looks as follows:

while condition:

instructions

3. The condition is an expression – as long it evaluates to True, or to a non-zero

numeric value, or to a non-empty string, it is fulfilled (met) and is not None, the

nested instructions placed after the while are executed.

4. When the condition is not met, these instructions are skipped.

For example, the following snippet prints TRUE twice to the screen:

counter = 2

if counter > 0:

print('TRUE')

counter -= 1

5. The else branch can be used to specify a part of the code that should be executed

when the loop’s condition is not met:

while condition:

instructions

else:

instructions

For example, the following snippet prints TRUE FALSE to the screen:

counter = 1

while counter > 0:

print('TRUE', end=' ')

counter -= 1

else:

print('FALSE')

6. If the condition is met at the beginning of the loop and there is no chance that the

condition value has changed inside the body of the loop, the execution enters an

infinite loop which cannot be broken without the user's intervention, for example

by pressing the Ctrl-C (Ctrl-Break) key combination.

For example, the following snippet infinitely prints TRUE to the screen:

while True:

print('TRUE', end=' ')

7. The for loop statement is a means allowing the programmer to repeat the

execution of the selected part of the code when the number of repetitions can be

determined in advance. The for statement uses a dedicated variable called a

control variable, whose subsequent values reflect the status of the iteration.

8. The basic form of the for statement looks as follows:

for control_variable in range(from, to, step):

instructions

9. The range() function is a generator responsible for the creation of a series of

values starting from from and ending before reaching to, incrementing the current

value by step.

10. The invocation range(i,j) is the equivalent of range(i, j, 1)

11. The invocation range(i) is the equivalent of range(0, i)

For example, the following snippet prints 0,1,2, to the screen:

for i in range(3):

print(i, end=',')

For example, the following snippet prints 2 1 0 to the screen:

for i in range(2, -1, -1):

print(i, end=' ')

12. The else branch can be used to specify a part of the code that should be

executed when the loop's body is not entered, which may happen when the range

being iterated is empty or when all the range's values have already been consumed.

For example, the following snippet prints 0 1 2 FINISHED to the screen:

for i in range(3):

print(i, end=' ')

else:

print('FINISHED')

For example, the following snippet prints FINISHED to the screen:

for i in range(1,1):

print(i, end=' ')

else:

print('FINISHED')

13. The break statement can be used inside the loop's body only, and causes

immediate termination of the loop's code. If the loop is equipped with the else

branch, it is omitted.

For example, these two snippets print 0 1 to the screen:

break inside for

for i in range(3):

if i == 2:

break

print(i, end=' ')

else:

print('FINISHED')

break inside while

i = 1

while True:

print(i, end=' ')

i += 1

if i == 3:

break

else:

print('FINISHED')

14. The continue statement can be used inside the loop's body only, and

causes an immediate transition to the next iteration of the for loop, or to the while

loop's condition check.

For example, these two snippets print 0 2 FINISHED to the screen:

continue inside for

for i in range(4):

if i % 2 == 1:

continue

print(i, end=' ')

else:

print('FINISHED')

continue inside while

i = -1

while i < 3:

i += 1

if i % 2 != 0:

continue

print(i, end=' ')

else:

print('FINISHED')

Exam block #3: Data Collections – Tuples,

Dictionaries, Lists, and Strings

Study Pages

Objectives covered by the block:

PCEP 3.1 Collect and process data using lists

 constructing vectors, indexing and slicing, the len() function, basic list methods

(append(), insert(), index()) and functions (len(), sorted(), etc.), the del instruction;

iterating through lists with the for loop, initializing loops; in and not in operators,

list comprehensions; copying and cloning, lists in lists: matrices and cubes.

PCEP 3.2 Collect and process data using tuples

 tuples: indexing, slicing, building, immutability; tuples vs. lists: similarities and

differences, lists inside tuples and tuples inside lists.

PCEP 3.3 Collect and process data using dictionaries

 dictionaries: building, indexing, adding and removing keys; iterating through

dictionaries and their keys and values, checking the existence of keys; keys(),

items() and values() methods.

PCEP 3.4 Operate with strings

 constructing strings, indexing, slicing, immutability; escaping using the \ character;

quotes and apostrophes inside strings, multi-line strings, basic string functions and

methods.

Lists

1. A list is a data aggregate that contains a certain number (including zero) of elements

of any type.

2. Lists are sequences – they can be iterated, and the order of the elements is

established.

3. Lists are mutable – their contents may be changed.

4. Lists can be initialized with list literals. For example, these two assignments

instantiate two lists – the former is empty, while the latter contains three elements:

empty_list = []

three_elements = [1, 'two', False]

5. The number of elements contained in the list can be determined by the len()

function. For example, the following snippet prints 3 to the screen:

print(len(['a', 'b', 'c'])

6. Any of the list's elements can be accessed using indexing. List elements are indexed

by integer numbers starting from zero. Therefore, the first list element's index is 0

while the last element's index is equal to the list length minus 1. Using indices that

are not integers raises the TypeError exception. For example, the following snippet

prints a b c 0 1 2 to the screen:

the_list = ['a', 'b', 'c']

counter = 0

for ix in range(len(the_list)):

print(the_list[ix], end=' ')

the_list[ix] = counter

counter += 1

for ix in range(len(the_list)):

print(the_list[ix], end=' ')

7. The list elements can be indexed with negative numbers, too. In this case, -1

accesses the last element of the list, and -2 accesses the one before the last, and so

on. The alternative first list element's index is -len(list).

8. An attempt to access a non-existent list element (when the index goes out of the

permissible range) raises the IndexError exception.

9. A slice is a means by which the programmer can create a new list using a part of the

already existing list.

10. The most general slice looks as follows:

the_list[from:to:step]

and selects those elements whose indices start at from, don't exceed to, and change

with step. For example, the following snippet prints ['b', 'd'] to the screen:

print((1,2,3)[4:5])

11. The following assumptions are made regarding the slices:

o the_list[from:to] is equivalent to the_list[from:to:1]

o the_list[:to] is equivalent to the_list[0:to]

o the_list[from:] is equivalent to the_list[from:len(the_list)-1]

o the_list[:] is equivalent to the_list[0:len(the_list)-1]

12. Slices – like indices – can take negative values. For example, the following

snippet prints [1,2] to the screen:

the_list = [0, 1, 2, 3]

print(the_list[-3:-1])

Lists and strings

1. If any of the slice's indices exceeds the allowable range, no exception is raised, and

the non-existent elements are not taken into consideration. Therefore, it is possible

that the resulting slice is an empty list.

2. Assigning a list to a list does not copy elements. Such an assignment results in a

situation when more than one name identifies the same data aggregate.

For example, the following snippet prints True to the screen:

list_a = [1]

list_b = list_a

list_b[0] = 0

print(list_a[0] == list_b[0])

As the slice is a copy of the source list, the following snippet prints False to the

screen:

list_a = [1]

list_b = list_a[:]

list_b[0] = 0

print(list_a[0] == list_b[0])

3. The .append(element) method can be used to append an element to the end of an

existing list. For example, the following snippet outputs [1] to the screen:

the_list = []

the_list.append(1)

print(the_list)

4. The .insert(at_index, element) method can be used to insert the element at

the at_index of the existing list. For example, the following snippet outputs [2,

1] to the screen:

the_list = [1]

the_list.insert(0, 2)

print(the_list)

5. The del the_list[index] instruction can be used to remove any of the existing

list elements. For example, the following snippet prints [] to the screen:

the_list = [1]

del the_list[0]

print(the_list)

6. The in and not in operators can check whether any value is contained inside the list

or not. For example, the following snippet prints True False to the screen:

the_list = [1, 'a']

print('a' in the_list, 1 not in the_list)

7. Lists can be iterated through (traversed) by the for loop, which allows the

programmer to scan all their elements without the use of explicit indexing. For

example, the following snippet prints 1 2 3 to the screen:

the_list = [1,2,3]

for element in the_list:

print(element, end=' ')

8. List comprehension allows the programmer to construct lists in a compact way.

For example, the following snippet prints [1,2,3] to the screen:

the_list = [x for x in range(1,4)]

print(the_list)

9. Strings, like lists, are sequences, and in many contexts they behave like lists,

especially when they are indexed and sliced or are arguments of the len() function.

10. The in and not in operators can be applied to strings to check if any string is a part

of another string. An empty string is considered a part of any string, including an

empty one.

11. Strings are immutable and their contents cannot be changed.

Tuples

1. A tuple, like a list, is a data aggregate that contains a certain number (including

zero) of elements of any type. Tuples, like lists, are sequences, but they are

immutable. You're not allowed to change any of the tuple elements, or add a new

element, or remove an existing element. Attempting to break this rule will raise the

TypeError exception.

2. Tuples can be initialized with tuple literals. For example, these assignments

instantiate three tuples – one empty, one one-element, and one two-element:

empty_tuple = () # tuple() has the same meaning

one_element_tuple = tuple(1) # must not be replaced with (1)!

one_element_tuple = 1, # the same effect as above

two_element_tuple = (1, 2.5)

two_element_tuple = 1, 2.5 # the same effect as above

3. The number of elements contained in the tuple can be determined by the len()

function. For example, the following snippet prints 4 to the screen:

print(len((1, 2.2, '3', True))

Note the inner pair of parentheses – they cannot be omitted, as it will cause the

tuple to be replaced with four independent values and will cause an error.

4. Any of the tuple's elements can be accessed using indexing, which works in the

same manner as in lists, including slicing.

5. An attempt to access a non-existent tuple element raises the IndexError exception.

6. If any of the slice's indices exceeds the permissible range, no exception is raised,

and the non-existent elements are not taken into consideration. Therefore, the

resulting slice may be an empty tuple. For example, the following snippet outputs

() to the screen:

print((1,2,3)[4:5])

7. The in and not in operators can check whether or not any value is contained inside

the tuple.

8. Tuples can be iterated through (traversed) by the for loop, like lists.

9. The + operator joins tuples together.

10. The * operator multiplies tuples, just like lists.

Dictionaries

1. A dictionary is a data aggregate that gathers pairs of values. The first element

in each pair is called the key, and the second one is called the value. Both keys and

values can be of any type.

2. Dictionaries are mutable but are not sequences – the order of pairs is imposed by

the order in which the keys are entered into the dictionary.

3. Dictionaries can be initialized with dictionary literals. For example, these

assignments instantiate two dictionaries – one empty and one containing two

key:value pairs:

empty_dictionary = {}

phone_directory = {'Emergency': 911, 'Speaking Clock': 767}

Dictionaries – continued

4. Accessing a dictionary's value requires the use of its key. For example, the

following line outputs 911 to the screen:

print(phone_directory['Emergency'])

5. An attempt to access an element whose key is absent in the dictionary raises the

KeyError exception.

6. The in and not in operators can be used to check whether a certain key exists in the

dictionary. For example, the following line prints True False to the screen:

print('Emergency' in phone_directory, 'White House' in

phone_directory)

7. The len() function returns the number of pairs contained in the directory. For

example, the following line outputs 0 to the screen:

print(len(empty_directory))

8. Changing a value of the existing key is done by an assignment. For example, the

following snippet outputs False to the screen:

attendance = {'Bob': True}

attendance['Bob'] = False

print(attendance['Bob'])

9. Adding a new pair to the dictionary resembles a regular assignment. For example,

the following snippet outputs 2 to the screen:

domains = {'au': 'Australia'}

domains['at'] = 'Austria'

print(len(domains))

10. Removing a pair from a dictionary is done with the del instruction. For

example, the following snippet outputs 0 to the screen:

currencies = {'USD': 'United States dollar'}

del currencies['USD']

print(len(currencies))

11. When iterated through by the for loop, the dictionary displays only its keys.

For example, the following snippet outputs A B to the screen:

phonetic = {'A': 'Alpha', 'B': 'Bravo'}

for key in phonetic:

print(key, end=' ')

12. The .keys() method returns a list of keys contained in the dictionary. For

example, the following snippet outputs A B to the screen:

phonetic = {'A': 'Alpha', 'B': 'Bravo'}

for key in phonetic.keys():

print(key, end=' ')

13. The .values() method returns a list of values contained in the dictionary.

For example, the following snippet outputs Alpha Bravo to the screen:

phonetic = {'A': 'Alpha', 'B': 'Bravo'}

for value in phonetic.values():

print(value, end=' ')

14. The .items() method returns a list of two-element tuples, each filled with

key:value pairs. For example, the following snippet outputs ('A', 'Alpha')

('B', 'Bravo') to the screen:

phonetic = {'A': 'Alpha', 'B': 'Bravo'}

for item in phonetic.items():

print(item, end=' ')

Exam block #4: Functions and Exceptions

Study Pages

Objectives covered by the block:

PCEP 4.1 Decompose the code using functions

 defining and invoking user-defined functions and generators; the return keyword,

returning results, the None keyword, recursion.

PCEP 4.2 Organize interaction between the function and its environment

 parameters vs. arguments; positional, keyword and mixed argument passing; default

parameter values, name scopes, name hiding (shadowing), the global keyword.

PCEP 4.3 Python Built-In Exceptions Hierarchy

 BaseException, Exception, SystemExit, KeyboardInterrupt, abstract exceptions,

ArithmeticError, LookupError along with IndexError and KeyError; TypeError and

ValueError exceptions, the AssertError exception along with the assert keyword.

PCEP 4.4 Basics of Python Exception Handling

 try-except, try-except Exception, ordering the except branches, propagating

exceptions through function boundaries; delegating responsibility for handling

exceptions.

Functions

1. A function is a named, separate part of the code that can be activated on demand.

A function can perform an action, or return a result, or both.

2. The simplest function, which does nothing and returns no result, can be defined in

the following way:

def lazy():

pass

3. Activating a function is done by the function invocation (function call). The

lazy() function defined above can be invoked by the following clause:

lazy()

4. Function definition must precede its invocation. Breaking this rule raises the

NameError exception.

5. A function can be equipped with an arbitrary number of parameters. The

parameters behave like variables known inside the function only, and their values

are set during the invocation. The invocation must provide as many arguments as

needed to initialize all parameters. Breaking this rule results in raising the

TypeError exception.

6. If a function is supposed to evaluate a result, it must perform the return expression

instruction, which immediately terminates function execution and causes the

function to return the expression value to the invoker. If the function does not

execute the instruction, or utilizes return without an expression, the None value is

returned implicitly. For example, the following snippet prints True None to the

screen:

def function(parameter):

if parameter == False:

return True

print(function(False), function(True))

7. A function definition can declare default values for some or all of its parameters.

When the invocation does not provide arguments for these parameters, the default

values are taken into consideration. Note: parameters with default values must not

precede the ones without them. For example, the following snippet prints True

False to the screen:

def function(parameter = False):

return parameter

print(function(True), function())

8. The positional parameter passing technique is a technique based on the assumption

that the arguments are associated with the parameters based upon their position

(i.e. the first argument value goes to the first parameter, and so on) For example, the

following snippet outputs 1 2 3 to the screen:

def function(a, b, c):

print(a, b, c)

function(1, 2, 3)

9. The keyword parameter passing technique is a technique based on the assumption

that the arguments are associated with the parameters based upon the parameter's

names, which must be explicitly specified during the invocation. For example, the

following snippet outputs 1 2 3 to the screen:

def function(a, b, c):

print(a, b, c)

function(c=3, a=1, b=2)

Functions – continued

10. A function definition can declare default values for some or all of its

parameters. When the invocation does not provide arguments for these parameters,

the default values are taken into consideration. Note: parameters with default values

must not precede the ones without them. For example, the following snippet prints 1

2 3 to the screen:

def function(a, b, c):

print(a, b, c)

function(1, c=3, b=2)

11. Note that the following invocation is incorrect and will raise the TypeError

exception, because the a parameter is set twice (once with the positional passing and

once with the keyword passing) while the c parameter is not set at all.

function(1, a=1, b=2)

12. A scope is the part of the code where a certain name is properly recognizable.

13. A variable existing outside a function has a scope which includes the function's

bodies.

14. A variable defined inside the function has a scope inside the function's body only.

15. If a certain variable is used inside a function and the variable’s name is listed

as an argument of the global keyword, it has global scope, and it is also

recognizable outside the function. For example, the following snippet outputs 2 to

the screen:

def function():

global variable

variable += 1

variable = 1

function()

print(variable)

Note: removing the line containing the global keyword will spoil the code and the

UnboundLocalError exception will be raised.

16. Changing the parameter's value doesn't propagate it outside the function.

For example, the following snippet outputs [1] to the screen:

def function(parameter):

parameter = [2]

the_list = [1]

function(the_list)

print(the_list)

17. If the parameter is a list or a dictionary, changing its contents propagates

them outside the function. For example, the following snippet outputs [2] to the

screen:

def function(parameter):

parameter[0] = 2

the_list = [1]

function(the_list)

print(the_list)

18. Recursion is a programming technique in which the function invokes itself

to perform a complex task. For example, the following snippet contains a function

that evaluates the factorial of its argument and prints 120 to the screen:

def factorial(n):

if n < 2:

return n

else:

return n * factorial(n - 1)

print(factorial(5))

Exceptions and debugging

1. An exception is an event caused by an execution error which can induce program

termination if not properly handled by the programmer. The situation in which the

exception is created and propagated is called raising the exception.

2. Python professes its philosophy expressed with the sentence: It's better to beg for

forgiveness than ask for permission. The recommendation hidden behind these

words says that the programmer should allow the exceptions to occur and handle

them properly instead of persistently avoiding problems and protecting the code

from all possible errors with all their might.

3. To control exceptions and to handle them, Python provides a dedicated construction

consisting of the try and except branches.

4. The try block encloses a part of the code that may cause an exception and when it

happens, the execution of the block is terminated and the control jumps into the

except block, which is dedicated to recognizing the problem and handling it. For

example, the following snippet prints PROCEEDING even though the code provokes

division by zero:

try:

x = 1 / 0

except:

x = None

print('PROCEEDING')

5. Here is a list of the most common Python exceptions:

o ZeroDivisionError: raised by a division in which the divider is zero or is

indistinguishable from zero (/, //, and %)

o ValueError: raised by the use of values that are inappropriate in the

current context, for example, when a function receives an argument of a

proper type, but its value is unacceptable, for example, int('')

o TypeError: raised by attempts to apply data of a type which cannot be

accepted in the current context, for example, int(None)

o AttributeError: raised – among other occasions – when the code tries to

activate a method that doesn't exist in a certain item, for example,

the_list.apend() (note the typo!)

o SyntaxError: raised when the control reaches a line of code that violates

Python's grammar, and which has remained undetected until now;

o NameError: raised when the code attempts to make use of a non-existent

(not previously defined) item, for example, a variable or a function.

6. When more than one exception is expected inside the try block and these different

exceptions require different handling, another syntax is used where there is more

than one named except branch. The unnamed (anonymous) except branch is the

default one, and is responsible for servicing these exceptions which still need to be

handled.

7. Not more than one except branch can be executed.

8. The default except branch – if it exists – must be the last branch.

9. For example, the following snippet outputs NAN when the user enters a string that is

not an integer number, ZERO when the user enters 0, and ERR in the case of another

error:

try:

print(1 / int(input("Enter a number: ")))

except ValueError:

print('NAN')

except ZeroDivisionError:

print('ZERO')

except:

print('ERR')

10. An error existing in the code is commonly called a bug.

11. The process by which bugs are detected and removed from the code is called

debugging.

12. The tool which allows the programmer to run the code in a fully controllable

environment is called a debugger.

13. The 'print debugging' technique is a trivial debugging technique in which the

programmer adds some print() function invocations which help to trace execution

paths and output the values of selected critical variables.

14. The process in which the code is probed to ensure that it will behave correctly in a

production environment is called testing. The testing should prove that all

execution paths have been executed and caused no errors.

15. The programming technique in which the tests and test data are created before the

code is written or created in parallel with the code is called unit testing. It is

assumed that every code amendment (even the most trivial) is followed by the

execution of all previously defined tests.

	Portada
	Exam block 1 test
	Exam block 2 test
	Exam block 3 test
	Exam block 4 test

